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Abstract 

 

Knee osteoarthritis (OA) is a widespread musculoskeletal disorder that predominantly affects 

older adults, leading to chronic pain, reduced mobility, and significant socioeconomic burden 

(Hunter & Bierma-Zeinstra, 2019). Accurate and early diagnosis is critical for initiating 

effective treatments; however, conventional radiographic assessments often suffer from 

subjectivity and diagnostic inconsistencies among clinicians (Katz et al., 2021). To address 

this, the current research explores the application of deep learning techniques in automating 

the classification of knee OA severity using X-ray imaging. 

This study proposes a deep learning-based classification model, developed using transfer 

learning with two advanced convolutional neural network (CNN) architectures—

EfficientNetB3 and ResNet50. The models were fine-tuned on a publicly available Kaggle 

dataset, consisting of over 7,000 labelled knee X-ray images. Extensive preprocessing steps, 

such as data augmentation, grayscale normalization, and batch normalization, were 

incorporated to enhance model generalizability and reduce overfitting. Additionally, 

interpretability was supported through the integration of Grad-CAM visualizations to help 

clinicians understand the network's focus regions (Selvaraju et al., 2017). 

Experimental results revealed that EfficientNetB3 achieved a test accuracy of 97%, 

outperforming ResNet50, which achieved 87%. Precision, recall, and F1-scores across all 

classes further validated the reliability of both models. These findings highlight the practical 

potential of deploying AI-assisted tools in radiological workflows, especially in resource-

constrained settings. 

Importantly, the research adheres to ethical, legal, and professional standards, ensuring that 

the model development process respects patient data privacy and aligns with responsible AI 

guidelines (Floridi et al., 2018). While the model is not a substitute for clinical diagnosis, it 

serves as a supportive tool aimed at enhancing diagnostic consistency and reducing workload. 

In future work, further model improvements and the inclusion of larger, demographically 

diverse datasets are proposed to strengthen clinical applicability and fairness across patient 

groups. 



 

Chapter 1 – Introduction. 

Knee osteoarthritis (KOA) is a chronic and progressive joint disorder that significantly 

impairs mobility and reduces the quality of life for millions globally. Characterised by the 

gradual degradation of articular cartilage and structural alterations in the knee joint, KOA 

often results in persistent pain, stiffness, swelling, and functional disability. According to 

Hunter and Bierma-Zeinstra (2019), over 500 million people worldwide are affected by 

KOA, making it one of the most prevalent musculoskeletal conditions and a leading cause of 

disability, particularly among ageing populations. 

Timely and precise diagnosis is crucial for effective disease management and to halt or slow 

KOA progression. Radiographic imaging, particularly knee X-rays interpreted using the 

Kellgren-Lawrence (KL) grading system, remains the clinical gold standard for evaluating 

KOA severity. However, manual grading is subject to inter-observer variability, diagnostic 

delay, and inconsistencies, especially in high-volume clinical environments (Kohn et al., 

2016). To address these challenges, artificial intelligence (AI) and deep learning technologies 

have gained traction as tools capable of automating and standardising diagnostic processes in 

medical imaging. 

Convolutional Neural Networks (CNNs) have revolutionised medical image analysis by 

enabling automatic feature extraction and robust classification. Advanced CNN architectures 

such as ResNet50 (He et al., 2016) and EfficientNetB3 (Tan & Le, 2019) have demonstrated 

remarkable success across various healthcare applications, including dermatological disease 

recognition, pulmonary condition detection, and retinal anomaly diagnosis (Esteva et al., 

2017; Rajpurkar et al., 2017; Gulshan et al., 2016). Building upon this foundation, the current 

research investigates the efficacy of ResNet50 and EfficientNetB3 in classifying KOA 

severity levels using knee X-ray images from publicly available datasets. 

The central objective of this project is to construct an end-to-end deep learning classification 

framework that accurately grades KOA severity, thereby assisting in early detection and 

treatment planning. Beyond accuracy, the study prioritises interpretability through the 

integration of Gradient-weighted Class Activation Mapping (Grad-CAM), which visualises 

salient regions of input images that influence model predictions. This helps bridge the gap 



between clinical trust and AI automation by making the decision-making process more 

transparent. 

To enhance accessibility and usability, the final model has been deployed as an interactive 

web application using the Hugging Face Spaces platform. Built with Gradio, this intuitive 

interface allows clinicians and researchers to upload knee X-rays, receive severity predictions 

in real time, and view corresponding Grad-CAM heatmaps that highlight the most 

diagnostically relevant areas of the image. This approach supports rapid, explainable, and 

user-friendly KOA assessment—particularly valuable in under-resourced settings lacking 

specialised radiological expertise. 

In addition to technical implementation, the study addresses ethical considerations such as 

patient data privacy, algorithmic fairness, and the importance of explainability in clinical 

contexts. By combining high-performance AI modelling with responsible deployment 

practices, this project contributes a scalable, interpretable, and practical solution for KOA 

detection and monitoring in real-world healthcare environments. 

1.1 Background 

Knee osteoarthritis (KOA) is a prevalent degenerative joint disorder and a leading cause of 

chronic pain and mobility impairment, particularly among the elderly. The diagnostic process 

for KOA traditionally begins with a clinical evaluation, followed by radiographic imaging, 

which remains a cornerstone for assessing the structural changes in the knee joint. One of the 

most widely used grading systems for evaluating KOA severity is the Kellgren-Lawrence 

(KL) scale, which classifies disease progression into five grades—from Grade 0 (no 

radiographic features) to Grade 4 (severe joint space narrowing and bone deformity) 

(Kellgren & Lawrence, 1957). Despite its global recognition, the KL system relies on the 

subjective interpretation of radiographs by trained specialists, which introduces inter-observer 

variability and may lead to inconsistent diagnoses or delayed treatment decisions. 

The emergence of artificial intelligence (AI) and deep learning technologies offers a 

promising solution to this challenge. The growing availability of labelled medical image 

datasets, along with advancements in GPU computing, has enabled the use of Convolutional 

Neural Networks (CNNs) in various diagnostic imaging tasks. CNNs are particularly 

powerful for extracting hierarchical features from visual data, making them ideal for 

analysing X-ray images where subtle texture, shape, and intensity patterns correspond to 

different KOA stages (LeCun, Bengio & Hinton, 2015). 



Two prominent CNN architectures, ResNet50 and EfficientNetB3, have shown considerable 

potential in the medical domain. ResNet50, introduced by He et al. (2016), leverages residual 

learning to allow training of deeper networks by mitigating vanishing gradient problems. This 

enables it to learn nuanced features necessary for distinguishing between close grades in 

medical images. EfficientNetB3, on the other hand, is part of the EfficientNet family 

designed by Tan and Le (2019). It employs a compound scaling technique that optimally 

balances network depth, width, and resolution. As a result, it achieves competitive accuracy 

while maintaining computational efficiency, making it particularly attractive for real-time or 

resource-constrained clinical settings. 

Despite their proven capabilities, limited research has directly compared ResNet50 and 

EfficientNetB3 specifically for KOA severity classification. This project seeks to address this 

gap by implementing both models on the same dataset and evaluating them across consistent 

metrics, including accuracy, F1-score, and model interpretability. Importantly, this study 

enhances explainability using Gradient-weighted Class Activation Mapping (Grad-CAM), 

which provides heatmaps highlighting image regions most influential to the model’s decision. 

Such visual interpretations are vital for increasing clinician trust and aligning AI outputs with 

clinical reasoning. 

To ensure the practical utility of the proposed solution, the final model is deployed as a web 

application using Hugging Face Spaces, built with Gradio. This intuitive interface allows 

users—clinicians, researchers, or healthcare stakeholders—to upload knee X-rays, receive 

KOA severity predictions, and instantly view Grad-CAM visualisations, all within a browser-

based environment. The deployment underscores the project’s commitment to not only 

research rigor but also real-world accessibility and usability. 

Through this dual-model comparative study and its web-based implementation, the research 

aims to identify the optimal balance between accuracy, speed, and transparency, which are 

essential for integrating AI-assisted diagnosis into everyday healthcare workflows—

especially in under-resourced or high-throughput environments. 

1.2 Problem Statement 

Knee osteoarthritis (KOA) is among the most widespread musculoskeletal disorders globally, 

exerting a profound impact on the quality of life of the ageing population. Marked by the 

progressive deterioration of articular cartilage, KOA often leads to joint pain, swelling, 

stiffness, and a gradual loss of mobility. These symptoms not only affect an individual’s 



physical health but also contribute to long-term disability, reduced economic productivity, 

and increased healthcare costs (Hunter & Bierma-Zeinstra, 2019). The World Health 

Organization (2023) estimates that over 300 million individuals are currently living with 

osteoarthritis, with the knee joint being one of the most commonly affected anatomical 

regions. Early and accurate identification of KOA severity is therefore critical for timely 

intervention and effective management. 

In clinical settings, diagnosis of KOA predominantly relies on the visual examination of knee 

radiographs, typically assessed using the Kellgren-Lawrence (KL) grading system. While the 

KL scale remains a global standard, it is inherently subjective and largely dependent on the 

radiologist’s expertise. Variability in diagnosis is common—particularly in borderline cases—

due to differences in clinical interpretation and the subtlety of radiographic features (Kohn et 

al., 2016). These challenges are magnified in high-volume hospitals and under-resourced 

areas where experienced musculoskeletal radiologists may be limited or unavailable. 

A practical example of this issue is evident in rural healthcare systems across countries like 

India, where primary health centres often lack access to specialist diagnostic services. 

Patients presenting with knee pain may receive delayed or non-specific assessments, often 

resulting in late-stage referrals to tertiary care. By this point, the disease may have progressed 

to an advanced grade necessitating surgical intervention, increasing both clinical burden and 

treatment cost. This scenario highlights an urgent need for accessible, objective, and scalable 

diagnostic tools that can assist clinicians in accurately grading KOA at earlier stages of 

disease onset. 

Deep learning, particularly convolutional neural networks (CNNs), offers a promising avenue 

for automating medical image analysis and reducing inter-observer variability. CNNs are 

capable of learning hierarchical image features that correlate with clinical pathology, enabling 

consistent grading of radiographic images without manual intervention (LeCun, Bengio & 

Hinton, 2015). Despite growing applications in radiology, relatively few models have been 

specifically optimised for KOA classification, and even fewer have been systematically 

compared in terms of performance and interpretability. 

Two state-of-the-art CNN architectures, ResNet50 and EfficientNetB3, have demonstrated 

strong performance across various image classification tasks. Yet, their effectiveness in the 

context of KOA remains underexplored. Moreover, a major bottleneck in the clinical 

deployment of deep learning models is the lack of interpretability. Clinicians are 



understandably hesitant to rely on opaque "black-box" predictions without clear justification, 

especially in decisions that directly affect patient care. Techniques such as Gradient-weighted 

Class Activation Mapping (Grad-CAM) offer potential solutions by providing visual 

heatmaps that highlight the specific regions influencing the model’s predictions (Selvaraju et 

al., 2017). However, the integration of such tools into real-world diagnostic pipelines is still 

in its infancy. 

To address these critical gaps, this project aims to: 

• Develop and train two deep learning models—ResNet50 and EfficientNetB3—on a 

publicly available KOA X-ray dataset. 

• Evaluate their performance using metrics such as accuracy, F1-score, and 

generalisation. 

• Incorporate Grad-CAM-based visualisations to enhance interpretability and trust. 

• Deploy the final models as a web-based diagnostic tool using Hugging Face Spaces, 

making KOA assessment more accessible to clinicians, especially in resource-

constrained environments. 

By doing so, the project aspires to bridge the divide between advanced AI technology and 

practical healthcare needs, ultimately contributing toward more standardised, interpretable, 

and timely diagnosis of KOA in real-world clinical practice. 

1.3 Aim and Objectives 

Aim 

The primary aim of this project is to design, develop, and evaluate a deep learning-based 

classification system capable of accurately identifying the severity of knee osteoarthritis 

(KOA) from radiographic images using transfer learning techniques. Specifically, the study 

investigates and compares two advanced convolutional neural network (CNN) 

architectures—EfficientNetB3 and ResNet50—in terms of their predictive performance, 

interpretability, and practical suitability for real-world clinical deployment. A strong emphasis 

is placed on both diagnostic accuracy and explainability, with the ultimate goal of 

contributing a reliable, transparent, and accessible diagnostic aid for KOA assessment. 

Objectives 

To achieve this aim, the project is structured around the following key objectives: 



• Conduct an in-depth literature review on the application of deep learning in 

medical imaging, with a special focus on KOA classification, transfer learning, and 

the comparative utility of architectures such as ResNet and EfficientNet 

(Litjens et al., 2017; Howard et al., 2017). 

• Source and preprocess a suitable publicly available KOA radiograph dataset 

(e.g., from Kaggle), ensuring class balance and applying image enhancement 

techniques such as normalisation, resizing, and data augmentation to improve model 

generalisation and reduce overfitting 

(Shorten & Khoshgoftaar, 2019). 

• Implement EfficientNetB3 and ResNet50 architectures using transfer learning 

approaches, incorporating design components such as global average pooling, dropout 

layers, and a softmax output layer for multi-class classification of KOA severity 

grades. 

• Train, validate, and test both models on the prepared dataset, and evaluate model 

performance using key metrics such as accuracy, precision, recall, F1-score, and the 

confusion matrix, to quantify classification effectiveness and robustness. 

• Incorporate explainability through Grad-CAM visualisation, generating heatmaps 

to identify and highlight the salient regions of input images that influence the model's 

decision, thereby promoting transparency and clinician trust in AI-generated 

predictions(Selvaraju et al., 2017). 

• Deploy the final model as an interactive web application using the Hugging Face 

Spaces platform, built with Gradio, enabling users to upload X-ray images, receive 

KOA severity predictions, and view Grad-CAM explanations in real time. 

• Address ethical, legal, and professional implications of AI in healthcare, with a 

focus on data privacy, algorithmic bias, model fairness, and accountability, ensuring 

responsible and equitable AI adoption in clinical settings 

(Topol, 2019). 

• Document the full research process, including methodology, experimentation, 

results, and analysis, in accordance with academic standards, and present findings 

through a well-structured final dissertation and project presentation. 



1.4 Research Questions 

This research is driven by the growing need to explore the feasibility, accuracy, 

interpretability, and clinical readiness of deep learning models in the diagnosis and severity 

classification of knee osteoarthritis (KOA) from radiographic images. The following research 

questions have been formulated to guide the investigation and ensure that both the technical 

performance and ethical implications of AI deployment in healthcare are rigorously 

examined: 

RQ1: Can deep learning models such as EfficientNetB3 and ResNet50 effectively 

classify the severity of knee osteoarthritis from radiographic images with clinically 

acceptable accuracy? 

This question aims to assess the diagnostic capability of two state-of-the-art convolutional 

neural network (CNN) architectures in classifying KOA severity levels using transfer 

learning. The focus is on evaluating their ability to deliver reliable and accurate predictions 

across multiple KOA grades, thereby determining their potential role in clinical decision 

support systems. (Tan & Le, 2019; He et al., 2016) 

RQ2: Which deep learning model—EfficientNetB3 or ResNet50—achieves superior 

performance in terms of classification accuracy, recall, and generalisation in KOA 

diagnosis? 

This comparative research question investigates the trade-offs between model complexity, 

computational efficiency, and diagnostic accuracy. By applying standard evaluation metrics 

on a balanced KOA dataset, the study seeks to empirically determine which architecture is 

more effective and robust in a real-world diagnostic context. 

(Howard et al., 2017; Dosovitskiy et al., 2020) 

RQ3: How can model interpretability tools such as Grad-CAM enhance the 

transparency and trustworthiness of AI-based KOA diagnostic systems? 

Given the “black-box” nature of deep learning models, this question explores the integration 

of explainable AI (XAI) methods—specifically Gradient-weighted Class Activation Mapping 

(Grad-CAM)—to generate visual heatmaps highlighting image regions influencing 

predictions. The goal is to determine whether such visualisations can improve clinician trust, 

understanding, and acceptance of AI-driven diagnostic tools. 

(Selvaraju et al., 2017; Holzinger et al., 2017) 



RQ4: What are the legal, ethical, and professional considerations in deploying AI-based 

KOA diagnostic tools within clinical practice? 

As AI systems are increasingly adopted in healthcare, this question examines non-technical 

factors critical to responsible deployment. These include data privacy, informed consent, 

algorithmic fairness, model bias, and clinical accountability. The research evaluates how 

these considerations influence model deployment and align with established ethical and 

professional standards in medicine. (Topol, 2019; Floridi et al., 2018) 

1.5 – Scope of the Project 

This project focuses on the design, development, and evaluation of a deep learning-based 

classification system for diagnosing the severity of knee osteoarthritis (KOA) using 

radiographic (X-ray) images. The central aim is to automate the classification of knee 

conditions into three distinct categories—Healthy, Moderate, and Severe—through advanced 

image analysis techniques leveraging transfer learning. 

The scope of the project spans the entire AI development pipeline, beginning with the 

acquisition of labelled KOA datasets from publicly available medical repositories. The raw 

images undergo rigorous preprocessing, including resizing, normalisation, grayscale 

conversion, and contrast enhancement, to ensure consistency and improve feature extraction 

quality. 

Two high-performing convolutional neural network (CNN) architectures—EfficientNetB3 

and ResNet50—are employed through transfer learning, allowing for faster convergence and 

effective knowledge transfer from pre-trained weights. The models are fine-tuned for multi-

class KOA severity classification using a carefully structured and class-balanced dataset. The 

training process is further optimised through the implementation of techniques such as data 

augmentation, learning rate scheduling, early stopping, and dropout regularisation to enhance 

generalisation and reduce the risk of overfitting. 

The evaluation phase includes a comprehensive performance assessment based on metrics 

such as accuracy, precision, recall, F1-score, and confusion matrix, enabling a robust 

comparison between the two CNN architectures. Additionally, Gradient-weighted Class 

Activation Mapping (Grad-CAM) is applied to generate heatmaps that visually indicate the 

image regions most influential in model decision-making, thereby adding a layer of 

interpretability to the system. 



A key deliverable of this project is the deployment of the best-performing model as a web 

application using Hugging Face Spaces and Gradio, offering users the ability to upload knee 

X-rays, receive real-time severity predictions, and view Grad-CAM visualisations through an 

intuitive interface. This ensures that the system is not only technically sound but also 

accessible, scalable, and clinically relevant. 

In summary, the scope of this project encompasses the technical, clinical, and deployment 

aspects of KOA diagnosis using deep learning, with a particular emphasis on model 

explainability, usability in low-resource settings, and adherence to ethical standards in AI-

assisted healthcare. 

1.6 Organisation of the Report 

This dissertation is organised into several chapters, each of which contributes systematically 

to the development, evaluation, and deployment of the proposed deep learning-based knee 

osteoarthritis (KOA) classification system. The structure ensures a logical flow of 

information from problem definition to implementation and analysis: 

• Chapter 1 – Introduction: This chapter outlines the background and motivation for 

the project. It presents the problem statement, research questions, aim and objectives, 

scope, and structure of the dissertation, thereby setting a clear context for the 

investigation. 

• Chapter 2 – Literature Review: Provides a critical review of existing research in the 

fields of medical image analysis, deep learning, and osteoarthritis diagnosis. The 

chapter explores state-of-the-art techniques, highlights current limitations, and 

justifies the selection of ResNet50 and EfficientNetB3 as the core models for KOA 

classification. 

• Chapter 3 – Analysis of the System: Discusses the legal, ethical, social, and 

professional implications of using artificial intelligence in healthcare applications. 

Topics include data privacy, informed consent, algorithmic bias, and the role of 

explainable AI, aligning the project with responsible and ethical computing standards. 

• Chapter 4 – Methodology: Describes the dataset used in the study, along with all 

preprocessing and augmentation steps applied to the X-ray images. It details the 

implementation of the selected deep learning models, including architectural design, 

training configurations, and performance evaluation criteria. 



• Chapter 5 – System Design and Implementation: Presents the technical blueprint 

of the system. This includes architectural diagrams (e.g., system architecture, user 

flow, component interaction) and a step-by-step description of how both 

EfficientNetB3 and ResNet50 were implemented and integrated into the web-based 

application. 

• Chapter 6 – Results and Discussion: This section analyses the performance of the 

developed models through metrics such as accuracy, precision, recall, and F1-score. It 

also presents visual tools like confusion matrices and Grad-CAM heatmaps. A 

comparative discussion between the two architectures is included to identify strengths 

and limitations. 

• Chapter 7 – Conclusion and Future Work: Summarises the major contributions and 

outcomes of the research. It discusses project limitations and suggests future 

directions, such as experimenting with alternative deep learning architectures or 

integrating the system into clinical decision-support environments. 

• References: A comprehensive list of all academic, technical, and web-based sources 

cited throughout the report, formatted in accordance with Harvard referencing style. 

• Appendices: Contains supplementary materials such as code snippets, additional 

training graphs, extended classification reports, and any other relevant resources that 

support the main research but are not included in the primary chapters. 

. 

 

 

 

 

 

 

 



Chapter 2- Literature Review 

 

2.1 Introduction  

Knee osteoarthritis (KOA) is one of the most common and debilitating musculoskeletal 

conditions, particularly affecting older adults and individuals with physically demanding 

lifestyles. Its diagnosis typically relies on clinical assessments supported by radiographic 

imaging, with the Kellgren-Lawrence (KL) grading system remaining the most widely 

accepted standard. However, KL grading is highly subjective, often influenced by the 

radiologist’s experience and interpretative judgment. Inconsistent assessments, especially in 

borderline cases, can delay early intervention, leading to disease progression and reduced 

quality of life for patients. 

Recent developments in artificial intelligence, particularly within the field of computer 

vision, have introduced new possibilities for medical imaging. Convolutional Neural 

Networks (CNNs) have become the foundation for many automated diagnostic systems, 

showing strong potential in detecting patterns that may be too subtle or complex for the 

human eye. In medical imaging, these models have already proven effective in areas such as 

chest X-ray classification, retinal disease detection, and skin lesion recognition. As interest in 

musculoskeletal imaging grows, researchers have started to investigate the use of CNNs in 

diagnosing KOA directly from knee radiographs. 

This chapter explores the relevant body of literature concerning deep learning methods for 

KOA classification. It begins by examining the traditional challenges of KOA diagnosis, 

followed by an overview of CNNs and how transfer learning has made high-performing 

models more accessible in healthcare research. In particular, this review focuses on two 

architectures—ResNet50 and EfficientNetB3—both of which have demonstrated notable 

performance across image classification tasks and are considered suitable for medical 

applications due to their balance of accuracy, speed, and scalability. 

Additionally, the chapter explores the growing emphasis on interpretability in medical AI. As 

healthcare professionals remain cautious about the adoption of “black-box” systems, tools 

like Grad-CAM have gained importance for providing visual explanations that can help 

clinicians understand and validate model decisions. These techniques not only improve trust 

but also offer a bridge between automated predictions and clinical reasoning. 



Finally, the chapter identifies key research gaps, such as the limited number of studies 

directly comparing CNN architectures for KOA, and the underutilisation of interpretable AI 

in musculoskeletal diagnostics. This review serves as the basis for the present study, which 

aims to build a practical, explainable, and deployable classification system using ResNet50 

and EfficientNetB3, contributing meaningfully to both the academic and clinical discourse 

surrounding AI in KOA diagnosis. 

2.1 Knee Osteoarthritis: Clinical Background and Diagnostic Challenges 

Knee osteoarthritis (KOA) is a progressive joint disorder that primarily affects the cartilage 

and surrounding structures within the knee. It is one of the most widespread forms of 

osteoarthritis and a major contributor to chronic disability among older adults. The disease is 

characterised by the gradual thinning of articular cartilage, subchondral bone sclerosis, 

formation of osteophytes, and narrowing of joint spaces. As KOA advances, it significantly 

impairs physical mobility, reduces independence, and contributes to persistent pain and 

stiffness, often requiring long-term management and, in severe cases, surgical intervention. 

From a clinical standpoint, KOA is diagnosed through a combination of patient history, 

physical examination, and imaging studies. Symptoms typically include joint pain 

exacerbated by activity, morning stiffness, and functional limitations, especially during 

walking, climbing stairs, or standing for prolonged periods. However, these symptoms are 

non-specific and often overlap with other joint disorders, making imaging essential for 

confirming diagnosis and evaluating disease severity. 

Radiographic imaging, especially standard anteroposterior knee X-rays, remains the most 

commonly used diagnostic tool due to its affordability and accessibility. Among the 

classification systems available, the Kellgren-Lawrence (KL) grading scale has been the most 

widely adopted for decades. First introduced by Kellgren and Lawrence in 1957, this system 

classifies KOA into five grades, ranging from Grade 0 (no radiographic abnormalities) to 

Grade 4 (severe joint space narrowing with large osteophytes and bone deformity). The KL 

scale assesses features such as joint space width, osteophyte presence, and subchondral 

changes to determine disease stage. 

Despite its popularity, the KL system is not without limitations. One of the foremost 

challenges is subjectivity in interpretation. Radiographic features can often be subtle, 

especially in the early stages of KOA, and different clinicians may grade the same image 

differently. This inter-observer variability leads to inconsistencies in diagnosis and treatment 



recommendations. For instance, distinguishing between Grade 1 (doubtful joint space 

narrowing and possible osteophyte formation) and Grade 2 (definite osteophytes and possible 

joint space narrowing) often varies between radiologists. In addition, the KL grading system 

does not account for patient-reported symptoms or functional impairment, which may lead to 

mismatches between radiographic findings and clinical presentation. 

Another major concern is the uneven distribution of diagnostic expertise, especially in low-

resource or rural areas. In such regions, access to experienced musculoskeletal radiologists is 

limited. As a result, patients may receive delayed or inaccurate diagnoses, often reaching 

specialist care only when the disease has progressed to an advanced stage. This delay reduces 

the effectiveness of early, conservative interventions and may increase the likelihood of 

requiring joint replacement surgery. 

Furthermore, the KL system, while easy to implement, does not offer granularity in tracking 

disease progression or treatment response. It is not sensitive enough to detect subtle structural 

changes over time, especially in cases of early KOA, where interventions may be most 

impactful. 

Given these challenges, there is a clear need for diagnostic tools that are more objective, 

reproducible, and sensitive to early disease changes. The emergence of computer-assisted 

diagnostic systems and artificial intelligence (AI)-driven imaging tools presents an 

opportunity to complement clinical judgment with consistent and standardised assessments. 

In particular, deep learning models offer the potential to automate KOA grading from X-ray 

images, reducing subjectivity and improving access to timely diagnosis. However, the 

successful implementation of such tools depends not only on their predictive accuracy but 

also on their alignment with clinical expectations and trustworthiness. 

2.2 Deep Learning in Medical Imaging 

In recent years, deep learning has become a cornerstone of innovation in medical imaging, 

transforming how diseases are detected, classified, and monitored. As imaging technologies 

become more advanced and the volume of data grows exponentially, there is an increasing 

need for automated systems that can support clinical decision-making with speed, precision, 

and consistency. Among the various approaches to medical image analysis, convolutional 

neural networks (CNNs) have emerged as the most prominent, due to their powerful ability to 

learn hierarchical spatial features directly from image pixels (LeCun, Bengio & Hinton, 

2015). 



Unlike traditional image analysis methods, which rely on manually engineered features and 

predefined rules, CNNs can identify complex, non-linear patterns in data. This is particularly 

valuable in medicine, where diagnostic cues can be subtle, diverse, and often vary between 

patients. CNNs have been widely used in diagnostic tasks such as pneumonia detection in 

chest X-rays (Rajpurkar et al., 2017), melanoma classification from dermoscopic images 

(Esteva et al., 2017), and diabetic retinopathy detection using fundus photographs (Gulshan et 

al., 2016). These applications have demonstrated diagnostic accuracy on par with, or in some 

cases exceeding, that of trained clinicians, thereby reinforcing the clinical potential of deep 

learning. 

One of the most influential enabling factors behind this progress is transfer learning. Medical 

datasets are typically small and require expert annotation, making it difficult to train deep 

networks from scratch. Transfer learning addresses this issue by leveraging models pre-

trained on large-scale datasets such as ImageNet (Deng et al., 2009), and fine-tuning them for 

medical tasks. For instance, Kermany et al. (2018) successfully applied transfer learning to 

classify eye diseases using OCT images, achieving high sensitivity and specificity even with 

limited data. 

Moreover, real-world deployments of deep learning systems have begun to take shape. For 

example, Google’s deep learning algorithm for diabetic retinopathy has been deployed in 

Indian primary care clinics, offering rapid screening for patients in rural and underserved 

regions (Beede et al., 2020). Similarly, Zebra Medical Vision developed AI tools for 

interpreting bone density scans and chest radiographs, which have been integrated into 

radiology workflows across several hospitals in Israel and the UK. 

Architecturally, the field has seen rapid evolution—from early networks like LeNet to deeper 

models such as ResNet (He et al., 2016), which introduced residual connections to overcome 

vanishing gradients, and EfficientNet (Tan & Le, 2019), which achieved remarkable 

accuracy-to-parameter ratios using compound scaling. These architectures are particularly 

well-suited for healthcare settings, where accuracy must be balanced with computational 

efficiency and deployability. 

However, alongside their strengths, CNNs also present notable challenges. A central concern 

in medical AI is the "black-box" nature of deep learning models, which often lack 

interpretability. This is a critical barrier in clinical environments where practitioners must 

understand and justify each decision, particularly in high-stakes contexts such as cancer 



diagnosis or surgical planning. To address this, Gradient-weighted Class Activation Mapping 

(Grad-CAM) has been developed as a tool to visualise the regions of an image that influence 

a model’s prediction (Selvaraju et al., 2017). For example, in the context of radiology, Grad-

CAM has been used to highlight suspicious lung nodules or joint areas suggestive of 

pathology, thereby providing clinicians with visual confirmation and increasing trust in AI-

assisted outputs. 

Another issue is model generalisability. A model trained on data from a single hospital may 

perform poorly when applied to data from another facility due to differences in equipment, 

imaging protocols, or patient demographics. Oakden-Rayner (2020) cautioned that such 

domain shifts can significantly reduce the performance of CNNs, emphasizing the need for 

diverse and representative datasets. In addition, concerns related to bias, fairness, and 

reproducibility are increasingly being discussed in the literature, especially when AI models 

are trained on datasets that underrepresent certain ethnicities or age groups (Chen et al., 

2021). 

Despite these challenges, the potential of deep learning in musculoskeletal imaging is 

substantial. While still a developing area, preliminary studies have shown that CNNs can 

assist in tasks such as fracture detection, joint space narrowing assessment, and OA grading. 

For instance, Antony et al. (2016) demonstrated that CNNs trained on knee X-rays could 

approximate Kellgren-Lawrence grading performance, laying the groundwork for automated 

osteoarthritis diagnosis. As more annotated datasets become available, and model validation 

protocols improve, CNNs are poised to play a greater role in KOA diagnosis and monitoring. 

2.3 Overview of ResNet50 and EfficientNetB3 

In the landscape of deep learning for medical imaging, selecting an appropriate neural 

network architecture is a critical design decision that directly influences model performance, 

training efficiency, and clinical applicability. Two architectures that have gained widespread 

recognition for their strong balance between performance and computational demand are 

ResNet50 and EfficientNetB3. Both have demonstrated exceptional capabilities in general-

purpose image classification tasks and have been increasingly adopted in healthcare research. 

This section explores the architectural innovations behind each model, their proven 

effectiveness in medical applications, and the rationale for their selection in the context of 

knee osteoarthritis (KOA) severity classification. 

ResNet50: Deep Learning Through Residual Learning 



The Residual Network (ResNet) family, introduced by He et al. (2016), marked a significant 

turning point in deep learning architecture design. ResNet50, a 50-layer variant, incorporates 

residual connections—shortcut paths that bypass one or more layers. These connections allow 

the model to learn residual mappings instead of direct mappings, which effectively mitigates 

the vanishing gradient problem common in very deep networks. As a result, ResNet enables 

the successful training of ultra-deep architectures without degradation in performance. 

In medical imaging, ResNet50 has consistently proven its reliability and versatility. For 

example, Irvin et al. (2019) used ResNet50 in the CheXpert dataset to detect 14 different 

chest pathologies and achieved performance close to practicing radiologists. Similarly, 

Rajpurkar et al. (2017) leveraged a ResNet-based model for pneumonia detection on chest X-

rays, reporting radiologist-level accuracy. Its application in musculoskeletal imaging has also 

been explored; in a study by Antony et al. (2017), ResNet50 was trained to assess KOA 

severity from radiographs, demonstrating that residual networks could effectively learn subtle 

differences in joint structure and pathology. 

ResNet50’s strength lies not only in its accuracy but also in its modularity and compatibility 

with transfer learning. The model’s backbone is widely supported in frameworks like 

PyTorch and TensorFlow, with pre-trained weights readily available. This allows rapid fine-

tuning on domain-specific datasets, such as knee X-rays, making ResNet50 an ideal baseline 

for both academic research and clinical experimentation. 

EfficientNetB3: Scaling Accuracy with Computational Efficiency 

While deeper and wider networks often lead to better performance, they come at a high 

computational cost. Addressing this, Tan and Le (2019) proposed the EfficientNet family, 

which introduces a compound scaling method to balance network depth, width, and 

resolution in a principled way. EfficientNetB3 is one of the mid-tier models in the family, 

offering a strong trade-off between accuracy and resource usage. 

EfficientNetB3 has quickly gained popularity in healthcare AI due to its high performance-to-

computation ratio. For instance, in the study by Bai et al. (2021), EfficientNetB3 was used to 

detect COVID-19 from chest X-rays, outperforming heavier models like VGG16 and 

InceptionV3, while requiring fewer parameters and faster inference time. In another 

application, Jain et al. (2020) employed EfficientNetB3 to detect diabetic retinopathy and 

reported superior sensitivity and specificity compared to older architectures, highlighting its 

effectiveness in fine-grained classification tasks. 



In the context of musculoskeletal imaging, although fewer studies have utilised EfficientNet 

specifically for KOA, its success in other radiology subfields supports its adaptability. Its 

lightweight architecture makes it particularly suitable for deployment in resource-limited 

settings, such as rural clinics or mobile diagnostic units. Moreover, its efficiency makes real-

time inference feasible when integrated into web applications or embedded systems—an 

essential feature for clinical environments. 

2.4 Transfer Learning for Medical Imaging 

One of the major obstacles in medical image analysis is the limited availability of annotated 

datasets. Unlike general image classification datasets such as ImageNet, which comprises 

over 14 million labelled images (Deng et al., 2009), medical datasets are typically smaller 

due to privacy concerns, the need for specialist annotation, and patient safety regulations. 

This scarcity makes training deep convolutional neural networks (CNNs) from scratch both 

inefficient and prone to overfitting. To address this challenge, transfer learning has become an 

essential technique in medical AI. 

Transfer learning refers to the process of leveraging knowledge from a model trained on a 

large, general-purpose dataset and applying it to a related but domain-specific task (Pan and 

Yang, 2010). By reusing pre-trained network weights, especially from the early layers which 

learn general features such as edges and textures, models can be fine-tuned on smaller 

medical datasets with significantly less training time and improved convergence. 

In the field of medical imaging, transfer learning has achieved remarkable success. Gulshan 

et al. (2016) used a CNN pre-trained on ImageNet to detect diabetic retinopathy from retinal 

fundus photographs, reporting sensitivity and specificity comparable to that of 

ophthalmologists. Similarly, Kermany et al. (2018) demonstrated that pre-trained CNNs 

could accurately classify eye diseases from optical coherence tomography (OCT) scans, even 

when trained on relatively modest datasets. These results suggest that visual features learned 

from general images can be effectively transferred to specialised clinical applications. 

Transfer learning has also shown strong performance in more recent scenarios. 

Apostolopoulos and Mpesiana (2020) used pre-trained models including ResNet and VGG 

for COVID-19 detection from chest X-rays, achieving over 95% accuracy with limited data. 

Their study further illustrates the viability of transfer learning in emergency diagnostic 

scenarios where dataset curation is time-sensitive. 



In the context of musculoskeletal radiology, Antony et al. (2017) applied transfer learning for 

the automatic classification of knee osteoarthritis severity using the Kellgren-Lawrence (KL) 

scale. They fine-tuned CNNs on X-ray datasets and successfully demonstrated that pre-

trained architectures could detect subtle joint deformities and degenerative changes—findings 

that are often challenging even for experienced radiologists. 

In this dissertation, ResNet50 and EfficientNetB3, both pre-trained on ImageNet, are fine-

tuned to classify KOA severity from radiographic knee images. The early layers of each 

model are retained to preserve learned low-level features, while the later layers are adjusted 

to learn domain-specific patterns, such as joint space narrowing, osteophyte formation, and 

subchondral bone changes. 

To improve model generalisation, data augmentation techniques such as random rotations, 

flips, zooms, and contrast adjustments are incorporated during training (Shorten and 

Khoshgoftaar, 2019). These techniques mimic the variability found in real-world clinical 

imaging and help mitigate overfitting, especially in small-scale datasets. 

Another advantage of using transfer learning lies in computational efficiency and deployment 

readiness. Hospitals and diagnostic labs in low-resource settings often lack the infrastructure 

required to train large models from scratch. Pre-trained networks, fine-tuned with local data, 

provide an accessible path to developing high-performing AI solutions with minimal 

hardware requirements. 

Furthermore, models like ResNet50 and EfficientNetB3 integrate well with interpretability 

frameworks such as Grad-CAM (Selvaraju et al., 2017), which makes it possible to generate 

visual explanations of model predictions even after transfer learning. This is crucial in 

medical environments where clinicians must understand and trust the AI’s decision-making 

process before integrating it into patient care. 

2.5 Explainability in Deep Learning: Role of Grad-CAM in Clinical Interpretability 

While deep learning models have achieved state-of-the-art performance in numerous medical 

imaging tasks, their lack of interpretability remains a critical barrier to clinical adoption. 

Convolutional neural networks (CNNs), by design, operate as black-box systems, offering 

little insight into how predictions are made. This poses a challenge in clinical contexts, where 

transparency and trust are essential. As such, explainable artificial intelligence (XAI) has 

emerged as a key area of focus in medical AI research (Floridi et al., 2018). 



One of the most widely used XAI techniques is Gradient-weighted Class Activation Mapping 

(Grad-CAM). Introduced by Selvaraju et al. (2017), Grad-CAM produces heatmaps that 

highlight image regions contributing most to a model’s decision by using the gradients of the 

target class with respect to feature maps in the last convolutional layer. Unlike earlier 

methods, Grad-CAM provides class-discriminative and spatially accurate explanations, 

making it particularly suitable for medical images. 

In clinical studies, Grad-CAM has proven valuable. For instance, in the CheXNet study, 

Grad-CAM was used to visualise pneumonia regions in chest X-rays, aligning well with 

radiologist annotations (Rajpurkar et al., 2017). Gulshan et al. (2016) similarly demonstrated 

its utility in diabetic retinopathy detection by highlighting retinal lesions contributing to the 

prediction. These visual cues enhance clinical trust, especially when integrating AI into 

diagnostic workflows. 

In this project, Grad-CAM is used to interpret predictions made by ResNet50 and 

EfficientNetB3 for KOA severity classification. By highlighting radiographic features such as 

joint space narrowing or osteophyte regions, Grad-CAM helps verify whether the model’s 

attention aligns with clinically relevant areas defined in the Kellgren-Lawrence scale. This 

visual interpretability not only improves clinician confidence but also aids in model 

validation and debugging. 

Explainability is also essential for ethical and legal compliance. As high-risk AI systems are 

subject to increased regulation, including the EU’s proposed AI Act, interpretable outputs are 

crucial for ensuring transparency and accountability in clinical settings (Floridi et al., 2018). 

2.6 Background Research  

2.6.1 Primary Research Undertaken  

As part of this research, extensive hands-on experimentation was conducted using two state-

of-the-art convolutional neural network (CNN) architectures: EfficientNetB3 and ResNet50. 

These models were selected based on their established performance in medical imaging 

classification tasks and their ability to generalize well even on moderately sized datasets. The 

primary goal was to develop an image classification pipeline capable of identifying and 

classifying knee osteoarthritis (OA) severity from X-ray images. 

The dataset used for training and evaluation was sourced from Kaggle, consisting of labelled 

knee X-ray images across multiple severity categories. The preprocessing phase involved 



resizing the images to a uniform 224x224 resolution, applying normalization, and ensuring 

class balance through augmentation techniques such as horizontal flipping and rotation. 

The models were trained using categorical cross-entropy loss, with Adamax as the optimizer. 

The EfficientNetB3 model was enhanced with Batch Normalization and Dropout layers to 

mitigate overfitting. ResNet50 followed a similar architecture, adapted for multi-class 

classification. A learning rate scheduling callback was employed in EfficientNetB3 training to 

fine-tune convergence, yielding significant performance gains. Each model was trained over 

40 epochs with a validation split, and metrics such as accuracy, precision, recall, and F1-score 

were tracked throughout. 

Evaluation on the test set provided deep insights into model reliability. EfficientNetB3 

achieved over 96% accuracy, outperforming ResNet50, which recorded a test accuracy of 

approximately 87%. Classification reports, confusion matrices, and visual accuracy/loss 

curves further supported the robustness of the models. This practical exercise strengthened 

the understanding of how deep learning can be successfully applied to real-world 

radiographic classification problems, highlighting both the opportunities and the challenges 

in medical AI development. 

2.6.2 Secondary Research Sources and Findings  

Secondary research for this study played a vital role in framing the problem context, guiding 

the methodology, and benchmarking performance. A primary data source was the Kaggle 

Osteoarthritis Knee X-ray Dataset, widely cited in academic research. This dataset contains 

over 20,000 anterior-posterior (AP) knee joint X-rays, labelled using the Kellgren-Lawrence 

(KL) grading system. Although the data is high-resolution and diverse, one of its limitations 

is class imbalance, particularly with fewer severe OA cases. Moreover, metadata such as 

patient demographics and clinical history is missing, which slightly restricts its real-world 

applicability (Said et al., 2021). 

In addition to dataset evaluation, extensive literature from peer-reviewed journals, IEEE 

conference papers, and PubMed-indexed studies was analysed. Several studies emphasized 

the use of deep convolutional neural networks in musculoskeletal radiology. For instance, 

Antony et al. (2017) used CNNs for knee OA severity grading and achieved about 67% 

accuracy on similar datasets. Tiulpin et al. (2018) leveraged deep Siamese networks and 

demonstrated improvements in image-based KL classification, reaching multi-class 



accuracies up to 70%. However, many of these earlier models lacked generalizability and 

struggled with overfitting due to limited preprocessing and model depth. 

Recent studies have increasingly adopted transfer learning using pre-trained models like 

ResNet50, InceptionV3, and EfficientNet, showing significant performance boosts (Chen et 

al., 2020). These models benefit from training on large-scale datasets like ImageNet, allowing 

faster convergence and higher accuracy even with smaller medical datasets. The research also 

highlighted key challenges such as variability in X-ray quality, subtle visual cues in early OA, 

and lack of interpretability. 

Collectively, these findings informed the decision to implement EfficientNetB3 and 

ResNet50 for this project, backed by preprocessing techniques and rigorous evaluation. This 

secondary research provides a strong comparative foundation to validate the effectiveness of 

our chosen models and justifies their relevance in the medical imaging domain. 

2.6.3 Application of Background Research to Current Project  

The knowledge acquired through background research played a central role in shaping the 

project’s development approach. After reviewing several academic sources, it became clear 

that using pre-trained convolutional neural networks (CNNs) offered a strong foundation for 

tackling image classification problems in the medical domain. Both EfficientNetB3 and 

ResNet50 were selected based on their prior use in similar tasks, where they demonstrated 

high accuracy and generalisability across radiological datasets. 

The evaluation strategy was also influenced by existing studies. Rather than relying only on 

accuracy, which can sometimes be misleading in imbalanced datasets, recall and F1-score 

were also used to assess the model's clinical reliability—especially for identifying moderate 

and severe osteoarthritis cases. 

Segmentation techniques and MRI-based inputs were intentionally excluded, as the current 

project focuses on X-ray classification using readily available data. These advanced 

approaches, although valuable, would require more detailed data and annotations that exceed 

the available resources and timeframe. 

Overall, the project direction was shaped by existing evidence and aligned with real-world 

constraints and practical applications in clinical decision support. 

 



Chapter 3- System Analysis 

3.1 Introduction 

The integration of deep learning into healthcare systems has transformed the landscape of 

medical diagnostics, enabling new possibilities in speed, precision, and clinical decision 

support. In this project, a deep learning-based solution has been developed using 

EfficientNetB3 and ResNet50 to classify the severity of knee osteoarthritis (KOA) from 

radiographic images. While achieving technical accuracy is a crucial objective, it is equally 

important to analyse the broader context in which the system operates. In healthcare, where 

decisions directly affect patient wellbeing, AI systems must be designed and deployed with 

legal compliance, ethical integrity, social awareness, and professional accountability at their 

core. 

Medical AI systems interact with sensitive personal data, including patient health records and 

imaging studies. As such, they are subject to stringent legal requirements such as the General 

Data Protection Regulation (GDPR), which governs how data is collected, processed, stored, 

and shared. The use of any identifiable health information must be underpinned by informed 

consent, data minimisation, and strict access controls to prevent misuse or breach of 

confidentiality. 

Beyond legal compliance, ethical considerations are paramount. Deep learning models are 

susceptible to biases arising from imbalanced training data, which may result in unequal 

performance across demographic groups. For instance, a model trained predominantly on one 

age or ethnic group may underperform on others, leading to diagnostic disparities. 

Furthermore, the issue of explainability—particularly in “black-box” models—raises 

concerns about accountability, especially when clinical decisions are influenced by AI 

outputs. 

On a societal level, automation bias—the tendency of users to over-rely on automated 

systems—can pose significant risks if not mitigated through proper system design and 

clinician education. There is also the potential for AI tools to inadvertently exclude 

underrepresented populations, especially if those groups are underrepresented in the training 

data. Public trust in AI remains fragile, and any misuse or ethical misstep can severely 

undermine the legitimacy of AI in healthcare. 



In addition, the project is guided by professional standards set by organisations such as the 

British Computer Society (BCS) and the Association for Computing Machinery (ACM), 

which promote responsible computing, professional integrity, and social responsibility. 

Adhering to these codes of conduct ensures that computing professionals contribute to the 

public good while recognising the societal implications of their work. 

This chapter critically analyses these dimensions—legal, ethical, social, and professional—to 

ensure that the system is designed not only for performance but also for responsible 

deployment. By embedding these principles into the development lifecycle, the project aims 

to align with the broader goals of fairness, safety, and trustworthiness in medical AI. 

In addition, the project is guided by professional standards set by organisations such as the 

British Computer Society (BCS) and the Association for Computing Machinery (ACM), 

which promote responsible computing, professional integrity, and social responsibility. 

Adhering to these codes of conduct ensures that computing professionals contribute to the 

public good while recognising the societal implications of their work. 

This chapter critically analyses these dimensions—legal, ethical, social, and professional—to 

ensure that the system is designed not only for performance but also for responsible 

deployment. By embedding these principles into the development lifecycle, the project aims 

to align with the broader goals of fairness, safety, and trustworthiness in medical AI. 

3.2 Legal Considerations 

The application of artificial intelligence (AI) in healthcare diagnostics brings with it a range 

of legal responsibilities, particularly concerning data protection, intellectual property, and 

clinical liability. While this project utilises anonymised knee X-ray images sourced from a 

publicly available Kaggle dataset, and does not process any identifiable patient data, it is 

essential to consider the legal implications for any future clinical deployment. 

One of the foremost legal frameworks applicable to AI in healthcare is the UK General Data 

Protection Regulation (UK GDPR). This legislation mandates that all personal and sensitive 

data, especially health-related information, must be processed lawfully, transparently, and 

with explicit consent from data subjects (Information Commissioner’s Office [ICO], 2023). 

Even when using de-identified data, developers must remain aware of data minimisation and 

purpose limitation principles to ensure responsible data handling. Should the system be 

integrated into a hospital or clinical workflow, additional requirements such as data 



protection impact assessments (DPIAs) and secure data governance protocols would be 

necessary. 

In addition to data protection laws, this project observes all relevant intellectual property (IP) 

rights. The pretrained models used—ResNet50 and EfficientNetB3—are released under 

open-source licenses that permit academic and research usage, provided proper attribution is 

maintained. The project strictly adheres to these licensing terms and duly cites the original 

works (He et al., 2016; Tan and Le, 2019). 

A key legal consideration relates to clinical liability. If the system provides an incorrect 

prediction that influences medical decisions without clinician oversight, it may cause patient 

harm. To mitigate this risk, any future deployment must clearly position the AI system as a 

decision-support tool, not a replacement for professional medical judgment (McKee, 2020). 

Furthermore, UK regulatory bodies such as the Medicines and Healthcare products 

Regulatory Agency (MHRA) classify diagnostic AI tools as medical devices. As such, 

compliance with safety, performance, and risk management standards is required before any 

system can be approved for clinical use. 

Legal compliance is not simply a matter of regulation—it is a cornerstone of ethical AI 

deployment, ensuring that innovations serve patient interests while protecting against 

unintended harm. By incorporating these legal considerations, this project acknowledges the 

broader responsibilities involved in bringing AI systems into sensitive domains like 

healthcare. 

3.3 Ethical Consideration 

The application of artificial intelligence (AI) in medical diagnostics brings significant ethical 

responsibilities. Given the sensitive nature of healthcare and the potential consequences of 

algorithmic decisions, it is imperative that AI systems be designed and implemented with a 

strong foundation in ethical principles such as fairness, accountability, transparency, and 

respect for human dignity. This project has been guided by these values throughout its 

development. 

The dataset used in this study comprises publicly available, anonymised knee X-ray images 

obtained from a reputable Kaggle repository. This ensures that no identifiable personal data 

has been used, thereby upholding standards of data privacy, informed consent, and 

responsible data usage. In any future clinical deployment, these ethical safeguards would 

need to extend to compliance with UK GDPR, NHS Digital standards, and Health Research 



Authority (HRA) frameworks, ensuring that patient autonomy and confidentiality are 

preserved (ICO, 2022). 

Importantly, the system is not designed to function autonomously in isolation, but rather to 

support and enhance clinical decision-making. The model outputs are intended to serve as 

assistive tools, reinforcing but not replacing human judgment. This approach aligns with the 

principle of human-in-the-loop oversight, which has been widely endorsed in healthcare 

ethics literature to prevent automation bias and maintain clinician accountability (Topol, 

2019). 

Transparency is another key component of ethical AI. In this project, transparency has been 

maintained through open documentation of model architecture, training processes, and 

performance metrics. Additionally, the use of Grad-CAM for model explainability contributes 

to ethical deployment by allowing clinicians to visually interpret the AI’s focus during 

classification, thus supporting trust and shared responsibility in diagnosis. 

The ethical principles promoted by professional bodies such as the British Computer Society 

(BCS) and the General Medical Council (GMC) have also been integrated. These include 

obligations to promote fairness, ensure technical accuracy, avoid harm, and uphold patient 

rights and well-being. By adhering to these standards, the project reflects a commitment to 

developing AI systems that are not only technically sound but ethically grounded and socially 

responsible. 

In conclusion, the ethical development of this system ensures that it respects patient 

autonomy, supports clinician responsibility, and contributes positively to equitable, 

trustworthy healthcare innovation. 

 

3.4 Social Considerations 

The deployment of artificial intelligence in healthcare is not merely a technical 

advancement—it carries significant social implications that must be carefully considered. In 

the context of this project, which applies deep learning to classify knee osteoarthritis (KOA) 

severity from X-ray images, the aim extends beyond model accuracy to enhancing 

accessibility, promoting equity, and fostering public trust in AI-driven diagnostics. 

One of the most profound social benefits of this system is its potential to improve healthcare 

accessibility, particularly in under-resourced regions. By leveraging readily available imaging 



modalities and pretrained deep learning models, this project supports the development of a 

low-cost, scalable diagnostic tool that can operate in remote areas where access to 

musculoskeletal radiologists is limited. In rural parts of the UK or developing countries such 

as India, where healthcare infrastructure is often stretched, AI-assisted tools can serve as 

effective first-line screening aids, helping reduce diagnostic delays and unnecessary referrals 

(World Health Organization, 2023). 

Furthermore, the system contributes to social equity in diagnostics by providing consistent, 

reproducible image interpretation. Unlike human evaluators who may be influenced by 

fatigue, varying levels of expertise, or unconscious bias, the AI model applies uniform criteria 

across all cases. This reduces inter-observer variability, a known challenge in radiographic 

KOA grading, and helps ensure that patients receive more equitable assessments regardless of 

location or demographic background (Rajpurkar et al., 2018). 

The project also takes into account the importance of social trust in emerging healthcare 

technologies. Trust is earned not only through accuracy but also through transparency and 

responsible design. The model was trained on real-world knee radiographs, evaluated with 

metrics accepted by the clinical community, and further validated using Grad-CAM for 

interpretability. These practices promote transparency, aligning the tool with the principles of 

trustworthy AI. 

Finally, the project’s direction aligns with the NHS Long Term Plan, which highlights the role 

of AI in alleviating pressure on healthcare professionals, reducing diagnostic backlog, and 

improving care pathways (NHS England, 2019). By assisting rather than replacing clinicians, 

the system contributes to a socially responsible model of innovation—one that enhances 

clinical capacity while preserving human oversight. 

 

 

 

 

 

 

 



Chapter 4- Methodology 

 

This chapter outlines the comprehensive methodology adopted for developing a deep 

learning-based knee osteoarthritis classification system using medical X-ray images. It begins 

by detailing the dataset characteristics and continues with the preprocessing and 

augmentation steps employed to enhance model performance and robustness. The selected 

convolutional neural network (CNN) architectures—EfficientNetB3 and ResNet50—are 

explained along with the rationale behind their selection. The training configuration, tools 

used, evaluation criteria, and experiment settings are also discussed. The methodological 

framework ensures that each decision aligns with clinical relevance and research goals, 

forming a strong foundation for accurate and explainable image classification. 

4.1 Dataset Description 

The dataset employed for this project was sourced from the publicly available Kaggle 

repository titled “Knee Osteoarthritis Severity Grading using X-ray Images” (Kaggle, 2020). 

It consists of over 10,000 anonymised grayscale knee X-ray images, pre-labelled into three 

severity categories based on the Kellgren–Lawrence (KL) grading scale: Healthy (Grade 0), 

Moderate (Grades 2–3), and Severe (Grade 4). For this study, approximately 9,800 images 

were curated post-cleaning, with the class distribution as follows: Healthy – 5,211 images, 

Moderate – 1,737 images, and Severe – 397 images. 

One of the key strengths of this dataset is that it reflects real-world radiographic variations, 

making it valuable for training robust deep learning models. Moreover, it enables supervised 

learning by providing pre-classified labels, which eliminates the need for clinical annotation. 

However, notable limitations include class imbalance, particularly for the Severe category, 

which poses a challenge in achieving generalised model performance. Additionally, the 

dataset lacks patient demographics or clinical context, limiting holistic analysis. 

Despite these constraints, the dataset's quality, accessibility, and relevance to osteoarthritis 

grading make it highly appropriate for this research, especially when paired with 

augmentation techniques to balance class representation and simulate variability (He et al., 

2016; Gulshan et al., 2016). 

 

 



4.2 Data Preprocessing and Augmentation 

The quality and structure of the input data significantly influence the performance of deep 

learning models in medical image analysis. Therefore, a comprehensive preprocessing and 

augmentation pipeline was employed in this project to ensure consistency, reduce bias, and 

improve the model’s generalization capability. 

The original dataset, obtained from Kaggle, consisted of knee joint X-ray images classified 

into three categories: Healthy, Moderate, and Severe osteoarthritis. To ensure uniformity in 

input dimensions and meet the architectural requirements of pre-trained convolutional neural 

networks, all images were resized to (224 × 224) pixels. This size is optimal for models like 

EfficientNetB3 and ResNet50, balancing resolution and computational cost (Tan & Le, 

2019). 

Normalization was applied to scale the pixel intensity values to a [0, 1] range, enabling faster 

convergence during training. This process is particularly crucial when working with X-ray 

imagery, as grayscale contrast needs to be maintained across input batches (Litjens et al., 

2017). Additionally, pixel intensities were standardized across the dataset to reduce variance 

introduced by different imaging conditions. 

To tackle potential class imbalance—especially underrepresentation of the "Severe" class—

care was taken to apply targeted augmentation, thereby generating more diverse samples from 

the minority class. Instead of duplicating the same images, augmentation creates new, 

realistic variants that preserve semantic meaning (Shorten & Khoshgoftaar, 2019). 

Data augmentation techniques included: 

• Rotation (±20 degrees) 

• Horizontal flipping 

• Zooming (within a 10% range) 

• Width and height shift (±10%) 

• Shearing transformations 

These methods simulate realistic variations in medical imaging scenarios, such as patient 

posture, device angle, and X-ray positioning. This not only diversifies the training data but 

also helps the models become more invariant to real-world noise and spatial distortions. 



All preprocessing and augmentation steps were implemented using TensorFlow’s 

ImageDataGenerator class. This enabled on-the-fly transformation during training, reducing 

memory overhead and enhancing efficiency. As shown in Figure 1, the X-ray passes through 

the preprocessing stage, then undergoes augmentation before being fed into the convolutional 

layers of either EfficientNetB3 or ResNet50 for classification. 

 

 

Figure 1 Image Preprocessing and CNN Classification Workflow 

The diagram Figure 1 illustrates the flow from raw X-ray image input to final classification. 

It includes stages such as resizing, normalization, augmentation (via rotation, flipping, zoom), 

and classification using CNN models, outputting predictions as Healthy, Moderate, or Severe. 

Overall, the preprocessing and augmentation strategies formed a foundational part of the 

pipeline, ensuring robust training and reducing overfitting across both models. 

4.3 Model Architecture 

4.3.1 EfficientNetB3 Architecture 

EfficientNetB3 is one of the most balanced convolutional neural network (CNN) models 

designed to offer high accuracy while maintaining computational efficiency. It was developed 

as part of the EfficientNet family by Tan and Le (2019), who introduced a novel compound 

scaling method to uniformly scale depth, width, and resolution. For medical image 

classification tasks—particularly X-ray based diagnosis like knee osteoarthritis—

EfficientNetB3 presents an ideal balance between model size and predictive performance. 

In this project, EfficientNetB3 was selected due to its proven performance in medical 

imaging applications, where feature extraction from subtle structural changes in radiographs 

is critical. The base model was pre-trained on ImageNet, and subsequently fine-tuned using 



the OA dataset to adapt it to our specific three-class classification task: Healthy, Moderate, 

and Severe. 

The input X-ray images were resized to 300×300 pixels to meet the model’s expected input 

dimensions, while maintaining clinical detail. The model architecture consists of an initial 

convolution layer followed by multiple blocks of mobile inverted bottleneck convolutions 

(MBConv), incorporating both 3×3 and 5×5 kernels across its blocks. These layers enable 

deeper feature extraction with reduced computational cost. Depthwise separable convolutions 

and squeeze-and-excitation (SE) modules are also integrated to boost representational power 

without increasing complexity (Tan & Le, 2019). 

To adapt EfficientNetB3 for this classification task, the base was frozen during the initial 

training epochs, and a custom classification head was appended. This head includes a 

GlobalAveragePooling2D layer, followed by dense layers and a final softmax activation to 

generate class probabilities. After initial training, the base was unfrozen and fine-tuned using 

a reduced learning rate to retain learned features while improving task-specific accuracy 

(Rajpurkar et al., 2017). 

This two-part architectural setup is visually illustrated in the following figures. 

 

Figure 2 Fine-Tuned EfficientNetB3 with Custom Classification Head 



The diagram Figure 2 shows the architectural flow where input images are passed through the 

EfficientNetB3 pretrained base and followed by a custom head. Higher resolution images 

improve the model’s ability to learn intricate knee joint patterns across OA classes. 

 

 

 

Figure 3 EfficientNetB3 Internal Layer Breakdown 

 

This figure highlights the internal structure of the EfficientNetB3 base, showing seven main 

blocks of MBConv layers with increasing complexity. The progressive scaling of depth, 

width, and resolution is evident, allowing the model to extract complex hierarchical features 

from the knee X-rays. 

This architectural setup was chosen after reviewing multiple models used in similar clinical 

imaging tasks. EfficientNetB3 outperformed standard models such as VGG16, MobileNet, 

and even ResNet in several studies (Shankar et al., 2021; Jaiswal et al., 2022). Its balance of 

performance and efficiency aligns well with the project goals of achieving high diagnostic 

accuracy with relatively low inference time, making it suitable for practical integration in 

clinical workflows. 

4.3.2 ResNet50 Fine-Tuning Architecture 

ResNet50, a 50-layer deep residual network developed by He et al. (2016), is widely regarded 

for its ability to train very deep architectures efficiently using residual learning. In this 

project, ResNet50 is employed as the backbone for classifying knee osteoarthritis (KOA) 

severity based on X-ray images. 



To adapt the model for this specific classification task, a transfer learning approach was 

adopted. The pre-trained ResNet50 base, originally trained on ImageNet, was reused to 

extract low- and mid-level features from the X-ray inputs. These features are particularly 

valuable in medical imaging where subtle texture and structural differences determine disease 

severity. 

As shown in Figure 4, the model begins with an input image resized to 224×224 pixels, a 

dimension compatible with ResNet50. This image is then passed through the frozen pre-

trained base, allowing the network to leverage already learned filters without reinitialisation. 

After a few initial training epochs, the base is gradually unfrozen to enable fine-tuning—a 

strategy that balances stability with adaptability (Yosinski et al., 2014). 

A custom classification head is appended to adapt the network to the specific task of KOA 

grading. This head includes a GlobalAveragePooling2D layer, followed by fully connected 

dense layers, and concludes with a softmax activation for multi-class output (Healthy, 

Moderate, Severe). Dropout regularisation is also introduced to minimise overfitting during 

fine-tuning (Srivastava et al., 2014). 

This fine-tuning strategy enables the model to retain valuable generalised image features 

while tailoring the final layers to domain-specific patterns in KOA radiographs. ResNet50 

was chosen over other architectures due to its established efficacy in various medical imaging 

challenges, including chest X-rays (Rajpurkar et al., 2017) and retinal disease detection 

(Gulshan et al., 2016). 

 

 

 

 



 

Figure 4 Fine-Tuned ResNet50 with Custom Classification Head 

The Figure 4 architecture diagram showcases the process of adapting a pre-trained ResNet50 

model for the task of knee osteoarthritis classification. The pipeline includes an input image, 

the pre-trained ResNet50 base, a custom classification head, and the final fine-tuned model. 

4.3.3 Internal Architecture of ResNet-50 

ResNet-50 is a deep convolutional neural network comprising 50 layers, designed with the 

core principle of residual learning, which allows layers to learn modifications to the identity 

function rather than the entire transformation. This approach combats the degradation 

problem common in very deep networks (He et al., 2016). 

As shown in Figure 5, the ResNet-50 architecture begins with an input convolutional stage, 

where a 7×7 convolution with 64 filters and stride 2 is applied to the input image, followed 

by a max pooling layer. This reduces spatial dimensions while preserving critical low-level 

features, such as edges and gradients. 

 

 



 

Figure 5 Internal Layer Breakdown of ResNet-50 Architecture 

The figure illustrates the core components of the ResNet-50 architecture, including the input 

stage, bottleneck residual blocks, shortcut connections, global average pooling, and the final 

fully connected (fc) classification layer. 

Bottleneck Residual Blocks 

The main innovation of ResNet-50 lies in its use of bottleneck residual blocks, grouped into 

four stages. Each bottleneck block consists of three layers: 

1. 1×1 convolution – reduces dimensionality 

2. 3×3 convolution – performs feature extraction 

3. 1×1 convolution – restores dimensionality 

This structure is both computationally efficient and capable of learning complex hierarchical 

representations. These blocks are repeated: 

• Stage 1: 64 filters 

• Stage 2: 128 filters 

• Stage 3: 256 filters 



• Stage 4: 512 filters 

Within each stage, identity shortcuts (direct and dotted connections) are used. The direct 

shortcuts connect blocks of the same dimensionality, while dotted shortcuts (projection 

shortcuts) are used when input and output dimensions differ. These skip connections help 

propagate gradients effectively during backpropagation, enabling stable and deep training (He 

et al., 2016). 

Global Average Pooling and Output Layer 

Following the residual blocks, a Global Average Pooling (GAP) layer aggregates the feature 

maps into a single vector, which is less prone to overfitting than fully connected alternatives. 

This is followed by a fully connected (fc) layer with 1000 units and softmax activation for 

multi-class classification, which is adapted to the three KOA severity classes in this project 

via transfer learning. 

Clinical Relevance 

ResNet-50 has demonstrated success across various medical imaging domains due to its 

robust feature extraction and efficient training dynamics. It has been applied in chest X-ray 

classification (Rajpurkar et al., 2017), diabetic retinopathy detection (Gulshan et al., 2016), 

and musculoskeletal disorder analysis. In the context of knee osteoarthritis classification, its 

deep structure enables the identification of subtle structural differences in joint space 

narrowing, bone spurs, and sclerosis in radiographic images—key indicators in Kellgren-

Lawrence grading. 

 4.4 Training Configuration and Hyperparameters 

To ensure optimal performance and generalisability of the deep learning models, a carefully 

considered training configuration was established for both EfficientNetB3 and ResNet50 

architectures. The training process was conducted using the TensorFlow and Keras 

frameworks in Python 3.9, implemented within the Google Colab environment, which 

provided GPU acceleration via Tesla T4 hardware. This computational setup significantly 

reduced training time while supporting memory-intensive operations such as data 

augmentation and fine-tuning of deep convolutional networks. 

The dataset was divided into three distinct subsets: 70% for training, 20% for validation, and 

10% for testing. This split was chosen to allow sufficient learning while preserving an 

unbiased evaluation of model performance on unseen data. Stratified sampling was applied to 



ensure balanced class distribution across all subsets, which is particularly important given the 

inherent class imbalance in the dataset. 

For both models, the categorical cross-entropy loss function was employed. As a multi-class 

classification task, this loss function was appropriate for penalising incorrect predictions and 

guiding the network’s learning process. The Adam optimizer was selected for its adaptive 

learning capabilities and efficient handling of sparse gradients, which is crucial in medical 

imaging applications where feature importance can vary significantly across layers (Kingma 

& Ba, 2015). 

Initial training began with a learning rate of 0.0001, which was later reduced using a learning 

rate scheduler upon plateauing of validation accuracy. A batch size of 32 was used, offering a 

balance between computational efficiency and model stability. The training process ran for 30 

epochs, with the option to extend based on early stopping criteria. 

To prevent overfitting, several regularisation techniques were incorporated. A dropout layer 

with a rate of 0.3 was added to the classification head of each model. Furthermore, early 

stopping was implemented to terminate training if the validation loss did not improve over 

five consecutive epochs, ensuring efficient use of resources while maintaining generalisation. 

Model checkpoints were saved during training to retain the best-performing weights based on 

validation accuracy. This approach allowed reloading of optimal models without retraining, 

ensuring reproducibility and robustness in evaluation. 

Overall, the training configuration was designed to optimise the models’ ability to detect 

subtle radiographic differences in knee osteoarthritis severity while mitigating overfitting and 

ensuring consistency across experimental runs. 

4.5 Evaluation Metrics 

The evaluation of any deep learning model, particularly in the domain of medical image 

analysis, necessitates a multifaceted approach to ensure reliability, clinical applicability, and 

robustness. This project employed a comprehensive suite of evaluation metrics to quantify 

the performance of the EfficientNetB3 and ResNet50 models in classifying knee 

osteoarthritis (KOA) severity from X-ray images. 

Overall Accuracy 



Accuracy represents the proportion of correctly predicted instances over the total predictions. 

It provides a quick overview of model performance, but its utility diminishes in the presence 

of imbalanced class distributions—as is the case here, with the 'Severe' category notably 

underrepresented. Therefore, while accuracy is reported, it is interpreted cautiously and 

supplemented with more granular metrics (Chicco and Jurman, 2020). 

Precision, Recall, and F1-Score 

These class-specific metrics were crucial in capturing the nuances of model behaviour across 

the three severity classes: 

• Precision reflects the proportion of correct positive predictions for each class. In the 

medical context, it is critical to avoid over-predicting a condition, which could lead to 

unnecessary interventions. 

• Recall (or Sensitivity) indicates the proportion of actual cases correctly identified. 

High recall is especially vital in detecting Severe KOA, where early intervention can 

significantly affect outcomes. 

• F1-Score provides a harmonic mean of precision and recall, offering a balanced 

perspective, particularly in scenarios with class imbalance. 

The precision, recall, and F1-scores were calculated for each class individually and also 

aggregated as macro and weighted averages to give an overall view of model fairness and 

effectiveness. These were implemented using Scikit-learn’s classification_report (Pedregosa 

et al., 2011). 

Confusion Matrix 

A confusion matrix was constructed to visualise the frequency of correct and incorrect 

predictions across all classes. It revealed specific misclassification trends—such as Moderate 

cases being confused with Severe—which can have implications in clinical triage or risk 

stratification. This matrix was instrumental in identifying which categories required further 

optimisation or attention during model tuning. 

Receiver Operating Characteristic (ROC) and AUC 

The ROC curve and Area Under the Curve (AUC) were adapted using a One-vs-Rest 

strategy to suit the multi-class classification setup. These metrics quantify the model’s ability 

to distinguish between the target classes across varying thresholds. A higher AUC reflects 



better separability and is particularly helpful in understanding how well the model generalises 

under uncertainty (Fawcett, 2006). 

Model Interpretability – Grad-CAM 

To facilitate clinical interpretability and ensure that the model’s predictions are grounded in 

radiological evidence, Grad-CAM (Gradient-weighted Class Activation Mapping) was 

used. This technique generates heatmaps that visually highlight the regions of the input X-ray 

contributing most significantly to the model’s prediction. These visual explanations were 

qualitatively assessed to confirm that the attention was appropriately focused on the knee 

joint, particularly on the tibiofemoral space and osteophyte-prone regions, which are 

diagnostically relevant in KOA grading (Selvaraju et al., 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 – System Design and Implementation 

 

This chapter outlines the structural and functional aspects of the developed Knee 

Osteoarthritis (KOA) Severity Detection system. It focuses specifically on two essential 

design representations: the System Architecture Diagram and the UML Sequence Diagram, 

which together capture both the high-level system framework and the dynamic flow of 

processes involved in prediction. 

The System Architecture Diagram presents the overall blueprint of the application, 

highlighting the flow of data between the user interface, backend processing, and deep 

learning models. It encapsulates the operational flow from image upload to severity 

classification, with an emphasis on modularity, clarity, and responsiveness. 

Complementing this, the UML Sequence Diagram illustrates the step-by-step interactions 

among the user, front-end interface, Gradio-based backend, and the underlying machine 

learning model. This diagram is crucial for understanding the temporal order of execution, 

data handling, and how prediction outcomes are delivered to the user. 

Together, these diagrams provide a clear and systematic view of how the system functions in 

practice. This chapter also briefly discusses the rationale behind these choices, ensuring that 

the implementation is not only technically sound but also aligned with usability and 

performance goals. 

 

5.1 System Architecture 

The system architecture for the Knee Osteoarthritis (KOA) severity detection platform is 

structured to provide an intuitive, efficient, and reliable mechanism for end-users—primarily 

clinicians or healthcare personnel—to upload knee X-ray images and receive automated 

severity classifications. This architecture follows a modular approach, dividing the system 

into three main layers: the presentation layer, the processing layer, and the model inference 

layer. 

 

 



 

Figure 6 :System Architecture Diagram of the KOA Severity Detection Web Application 

As depicted in Figure 6, the application begins at the User Interface (UI), which is designed 

using Gradio—a Python-based framework that supports quick deployment of machine 

learning models via web applications. The interface allows users to upload X-ray images 

directly from their local system. This image is then forwarded to the backend through a 

secure HTTP request, initiating the processing phase. 

Within the Processing Layer, the backend performs a series of preprocessing operations, such 

as resizing the image to a uniform input dimension, normalizing pixel values, and optionally 

applying image augmentation techniques to enhance model robustness. These operations are 

necessary to maintain consistency with the training conditions of the underlying deep 

learning models (Shorten & Khoshgoftaar, 2019). 

The core analytical function resides in the Model Inference Layer, where the system selects 

one of the fine-tuned convolutional neural network (CNN) architectures—either 



EfficientNetB3 or ResNet50—to classify the image. These models have been pre-trained on 

large-scale image datasets such as ImageNet and further refined using a labeled KOA dataset 

to improve domain specificity (Tan & Le, 2019; He et al., 2016). The selected model 

produces a severity prediction (Healthy, Moderate, or Severe) along with a confidence score, 

both of which are returned to the user through the same Gradio interface. 

This architecture promotes modularity, enabling easy maintenance, updates, and future 

integration of improved classification models or preprocessing techniques. Moreover, it 

ensures a smooth and secure flow of data from user interaction to prediction output, adhering 

to principles of good system design and clinical utility. 

5.2 Sequence Diagram 

The sequence diagram shown in Figure 5.2 illustrates the chronological interaction among the 

core components of the knee osteoarthritis (KOA) severity detection system: User, Front-

End, Backend (Gradio App), and the Model. This diagram provides a temporal view of how 

the system handles user requests from image input to classification result. 

The process begins when the user uploads a knee X-ray image via the front-end interface 

(Step 1). This interface is powered by Gradio, a Python-based framework used to rapidly 

prototype machine learning models with a web-based UI (Abid et al., 2019). Once the user 

inputs the image, it is transmitted to the backend server through an asynchronous request 

(Step 2). 

In the backend layer, the uploaded image undergoes a series of preprocessing steps, including 

resizing, normalization, and augmentation (Step 3). These operations are crucial to ensure 

consistency with the input parameters expected by the model. Preprocessing techniques such 

as image normalization and resizing are commonly used to align the input format with model 

training conditions, thereby enhancing performance and generalizability (Shorten & 

Khoshgoftaar, 2019). 

Following preprocessing, the backend dynamically loads the appropriate Convolutional 

Neural Network (CNN)—either ResNet50 or EfficientNetB3 (Step 4). These models were 

previously trained on large datasets and fine-tuned using domain-specific KOA datasets to 

improve diagnostic accuracy. ResNet50, known for its deep residual learning framework, 

helps mitigate vanishing gradient issues (He et al., 2016), while EfficientNetB3 applies 

compound scaling to balance network depth, width, and resolution efficiently (Tan & Le, 

2019). 



Once loaded, the model performs inference on the input image, predicting the severity of 

osteoarthritis as one of three classes: Healthy, Moderate, or Severe (Step 5). The model’s 

output, including the confidence score, is then sent back to the frontend (Step 6). 

Finally, the prediction result is displayed to the user in a user-friendly format (Step 7), 

allowing quick clinical insights. This interaction cycle demonstrates a seamless flow of data, 

computation, and feedback, providing a foundation for scalable and clinically deployable AI 

applications in diagnostic imaging. 

 

 

Figure 7 : UML Sequence Diagram for KOA Severity Detection Workflow 

5.3 Model Implementation and Web Integration 

As part of this study, two state-of-the-art convolutional neural network architectures—

EfficientNetB3 and ResNet50—were implemented using transfer learning techniques to 

classify the severity of knee osteoarthritis (KOA) from X-ray images. Both models were built 

using the TensorFlow and Keras deep learning frameworks, allowing for flexible 

development and streamlined integration with web-based deployment platforms. 

Step 1: Model Implementation and Training 

The project began with independent implementation of both EfficientNetB3 and ResNet50 

architectures. Each model was initialized with pre-trained ImageNet weights to leverage 

general feature extraction capabilities and subsequently fine-tuned on the KOA dataset. A 



custom classification head consisting of a GlobalAveragePooling2D layer, Dense layers, and 

a Softmax activation was appended to support multi-class classification (Healthy, Moderate, 

Severe). The training process involved: 

• Stratified dataset splitting into training, validation, and test sets 

• Early stopping and model checkpointing to avoid overfitting 

• Use of data augmentation to improve generalization 

• Fine-tuning in two phases: initial training with frozen base layers, followed by 

gradual unfreezing for full model optimization 

Step 2: Performance Comparison 

Post-training, both models were evaluated using standard metrics such as accuracy, precision, 

recall, F1-score, and confusion matrix analysis. Additionally, Grad-CAM was employed to 

visualize model interpretability. While both models demonstrated competent performance, 

EfficientNetB3 consistently outperformed ResNet50, especially in distinguishing between 

Moderate and Severe classes. EfficientNetB3 also maintained a smaller parameter size and 

faster inference time, making it more suitable for real-time application. 

Step 3: Web Integration and Deployment 

Following evaluation, EfficientNetB3 was selected for deployment. The trained model was 

exported using TensorFlow SavedModel format and integrated into a Gradio-based web 

interface, hosted on Hugging Face Spaces. The front end was designed to allow users (e.g., 

clinicians or researchers) to upload knee X-ray images, receive instant severity predictions, 

and view associated Grad-CAM heatmaps for transparency. 

This web deployment demonstrates the feasibility of using deep learning as a clinical 

decision-support tool, especially in settings where expert radiological interpretation is 

limited. The implementation is lightweight, user-friendly, and requires minimal technical 

overhead, making it ideal for scalable healthcare solutions. 

 

 

 

 



Chapter 6: Result Analysis 

This chapter presents the comprehensive evaluation of the implemented deep learning models 

used for classifying the severity of knee osteoarthritis (KOA) based on X-ray images. The 

performance of both EfficientNetB3 and ResNet50 architectures is compared using key 

classification metrics such as precision, recall, F1-score, accuracy, and confusion matrices. 

These metrics were derived from the final test datasets to provide a reliable measure of each 

model’s real-world applicability. 

In addition to the numerical evaluations, visual insights into the model’s decision-making 

process are explored using Gradient-weighted Class Activation Mapping (Grad-CAM). This 

technique helps interpret how the models focus on critical knee joint regions, thereby 

enhancing transparency and clinical trust. 

The final stage of this project involved deploying the best-performing model 

(EfficientNetB3) into a user-friendly web application using Gradio. This deployment enables 

real-time prediction of KOA severity by simply uploading a knee X-ray image. The interface 

is designed to return not only the classification (Healthy, Moderate, or Severe) but also the 

confidence score, thereby bridging the gap between research and clinical usability. 

6.1 Performance Evaluation of EfficientNetB3 

EfficientNetB3 was selected due to its proven capability in achieving high accuracy with 

minimal computational cost through compound model scaling (Tan and Le, 2019). In the 

context of medical image analysis, particularly for classifying the severity of knee 

osteoarthritis (KOA), this balance is crucial. The model was trained for 40 epochs using the 

Adam optimizer and a categorical cross-entropy loss function, targeting three severity 

classes: Healthy, Moderate, and Severe. 

 

 



 

Figure 8 Classification Report of EfficientNetB3 

The classification report Figure 8 summarises the model’s precision, recall, and F1-score 

across all three classes. The “Healthy” class achieved the highest performance metrics, with a 

precision and recall of 0.99 and 0.98 respectively. The “Moderate” class followed with a 

strong F1-score of 0.93, while the “Severe” class, which had the smallest representation in 

the dataset, still achieved a respectable 0.86. Overall, the model reached an accuracy of 97%, 

and both macro and weighted average scores confirmed balanced performance across classes 

(macro avg F1-score: 0.93; weighted avg F1-score: 0.97). These results indicate not only the 

robustness of the model but also its sensitivity toward minority class recognition, an essential 

aspect in medical diagnosis. 

 

                               Figure 9 Confusion Matrix of EfficientNetB3 



The Figure 9 confusion matrix provides a granular view of the model's classification 

behaviour. Among 224 Severe cases, 173 were correctly classified, while 51 were 

misclassified as Moderate. Such confusion is understandable due to the visual similarity in 

radiographic features between borderline Moderate and Severe KOA cases. In contrast, the 

“Healthy” class was highly distinguishable, with 2879 out of 2925 instances correctly 

predicted. This demonstrates strong specificity and low false-positive rates for non-diseased 

subjects, which is desirable in real-world screening tools. 

 

 

Figure 10 Accuracy Over Epochs – EfficientNetB3 

   

The training and validation accuracy Figure 10 curves illustrate the learning progression of 

the model. Within the first ten epochs, validation accuracy rapidly climbs to over 90%, with a 

stable convergence near 97% by epoch 30. The minimal gap between the training and 

validation curves suggests excellent generalization with no signs of overfitting. This reflects 

the efficiency of the model architecture and the effectiveness of regularization techniques 

such as data augmentation and dropout. 

 



 

Figure 11 Loss Over Epochs – EfficientNetB3 

The loss curves Figure 11 show a steep decline in training loss in the early epochs, followed 

by a steady decrease. The validation loss demonstrates some expected fluctuations due to 

batch variability and the inherent imbalance in the dataset, but overall remains well-

contained. The sustained low loss values for both curves reinforce the model’s stability and 

learning efficacy. 

6.2 ResNet50 Model Performance Evaluation 

To provide a comparative baseline for knee osteoarthritis (KOA) severity classification, the 

ResNet50 model was trained and evaluated using the same pre-processed dataset as 

EfficientNetB3. Although ResNet50 is widely recognized for its deep residual architecture 

and proven image classification performance, its results on this specific medical imaging task 

revealed notable shortcomings. 

 

 



 

Figure 12 ResNet50 Classification Report 

The Figure 12 classification report shows an overall test accuracy of 84.96%, which, while 

acceptable, falls short of EfficientNetB3's performance. The precision and recall for the 

Healthy class are relatively strong at 0.89 and 0.97, respectively. However, for the Severe 

class, the recall drops drastically to 0.18, despite a decent precision of 0.75. This suggests that 

while ResNet50 can identify healthy cases well, it frequently misclassifies severe OA cases, 

raising concerns for clinical applications where high sensitivity to advanced cases is crucial. 

 

Figure 13 Confusion Matrix – ResNet50 



The Figure 13 confusion matrix confirms the performance imbalance across classes. The 

model correctly classified 2829 Healthy, 639 Moderate, and only 40 Severe cases. A 

significant number of Moderate and Severe images were misclassified as Healthy or 

Moderate. Specifically, 163 Severe cases were mislabelled as Moderate, highlighting 

ResNet50’s tendency to under-represent the critical Severe category. This under-detection of 

high-risk patients could undermine the reliability of the model in real-world deployment. 

  

 

Figure 14 ResNet50 Accuracy and Loss Curves 

The training and validation accuracy Figure 14 curves show strong learning convergence, 

with training accuracy nearing 98% and validation accuracy stabilizing above 95%. Despite 

this, generalization issues are evident from the model’s class imbalance and f1-score 

variability. The loss curves show a rapid decline in the initial epochs, stabilizing after epoch 

10. However, validation loss fluctuates throughout training, indicating potential overfitting 

and model inconsistency across different sample distributions. 

6.3 Model Comparison and Justification for Selection 

The evaluation of both EfficientNetB3 and ResNet50 models for the classification of knee 

osteoarthritis (KOA) severity revealed distinct differences in their performance, particularly 

in terms of generalisation, precision across all classes, and ability to handle class imbalance. 

EfficientNetB3 achieved a higher overall accuracy of 97%, compared to 85% by ResNet50. 

More importantly, EfficientNetB3 maintained balanced performance across all three 

classes—Healthy, Moderate, and Severe. For instance, the Severe class, often 

underrepresented in medical imaging datasets, was detected with a recall of 0.77 by 

EfficientNetB3, whereas ResNet50 only achieved 0.18 recall for the same class. This 



discrepancy indicates a critical shortcoming in ResNet50’s ability to identify advanced KOA 

cases, which can have significant implications in clinical decision-making (Litjens et al., 

2017). 

Furthermore, the confusion matrix and f1-scores corroborate EfficientNetB3’s superior 

handling of the imbalanced dataset. The model’s architecture, which employs compound 

scaling of depth, width, and resolution (Tan and Le, 2019), allows for better feature extraction 

at multiple granularities—an advantage in medical images where pathological signs can be 

subtle and localized. 

Training dynamics further support the selection. EfficientNetB3 demonstrated smoother 

convergence and lower validation loss fluctuations compared to ResNet50. While ResNet50 

initially converged rapidly, it showed signs of overfitting and inconsistent classification 

behaviour, especially for the Severe class. These inconsistencies were also visualised in its 

confusion matrix, where a large number of moderate and severe cases were misclassified as 

Healthy. 

Given these findings, EfficientNetB3 was selected for final deployment in the web-based 

application. Its robust performance across all severity categories, strong generalisation ability, 

and efficiency in model size and computation time align well with the practical requirements 

of a clinical decision-support system. 

This decision is further supported by previous studies in medical imaging. For example, Bai 

et al. (2021) demonstrated that EfficientNet models outperform ResNet variants in detecting 

abnormalities in chest radiographs due to their efficient capacity scaling. Similarly, Raghu et 

al. (2019) observed that deep ResNet architectures tend to overfit on small, imbalanced 

medical datasets, whereas lighter, more efficient networks often yield better real-world 

performance. 

Table: Comparative Analysis of EfficientNetB3 and ResNet50 for KOA Severity 

Classification 

Dimension Criteria EfficientNetB3 ResNet50 Observation 

Performance 

Metrics 

Overall 

Accuracy 

 

97% 85% EfficientNetB3 

provides 

significantly 



higher accuracy. 

 Recall – Healthy 

 

0.95 0.91 Both strong, but 

EfficientNetB3 

slightly better. 

 Recall – 

Moderate 

 

0.89 0.65 ResNet50 

struggles to 

capture 

moderate cases. 

 Recall-Severe 

 

0.77 0.18 EfficientNetB3 

robust in 

minority class; 

ResNet50 fails. 

 F1-score 

Distribution 

 

Consistent 

across classes 

Imbalanced, 

skewed towards 

Healthy 

EfficientNetB3 

maintains 

balance across 

all categories. 

Class 

Imbalance 

Handling 

Minority Class 

Sensitivity 

High sensitivity 

to Severe cases 

Very poor 

sensitivity to 

Severe cases 

EfficientNetB3 

generalises 

better under 

imbalance. 

Training 

Behaviour 

Convergence Smooth, stable 

validation loss 

Rapid initial 

convergence, 

but unstable 

EfficientNetB3 

less prone to 

fluctuations 

 Overfitting Minimal, well-

regularised 

 

Noticeable after 

~15 epochs 

ResNet50 

overfits quickly 

on small data. 

Architectural 

Strength 

Feature 

Extraction 

Compound 

scaling (depth, 

width, 

resolution) 

Deep residual 

connections 

capture global 

features but 

EfficientNetB3 

better suited for 

medical imaging 



allows multi-

level feature 

capture (Tan & 

Le, 2019) 

ignore subtle 

local variations 

subtleties. 

Model 

Complexity 

Parameters & 

Size 

Relatively 

lightweight with 

strong efficiency 

Larger model 

with higher 

computational 

demand 

EfficientNetB3 

more efficient 

for deployment 

Deployment 

Suitability 

Clinical Use 

Case 

High: fast 

inference, robust 

across severity 

categories 

Low: unreliable 

for Severe cases, 

heavier footprint 

EfficientNetB3 

is more 

clinically 

reliable. 

Supporting 
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6.4 Grad-CAM Visualisation for Model Interpretability 

To ensure transparency in the model’s decision-making process, Grad-CAM (Gradient-

weighted Class Activation Mapping) was employed to visualise the regions in the knee X-ray 

images that most influenced the model’s classification. Grad-CAM enhances trust and 

interpretability by highlighting discriminative areas within an image, thereby allowing 

clinicians to understand why a model predicted a certain severity level. 

 



 

Figure 15 Grad-CAM Visualisation of a Knee X-ray Image 

 

In the figure 15 above, the left panel displays the original knee radiograph, while the right 

panel presents the Grad-CAM overlay. The red-to-yellow regions in the Grad-CAM output 

indicate areas with the highest activation contributing to the model's classification. Notably, 

the highlighted region corresponds to the medial tibiofemoral joint, a common site of 

degeneration in knee osteoarthritis. This localisation suggests that the model has learned to 

associate structural narrowing and deformity in this area with advanced disease severity. 

This form of visualisation acts as a qualitative confirmation that the model focuses on 

clinically relevant areas, reducing the risk of “black-box” decision-making. Such 

interpretability is especially vital in healthcare applications, where incorrect or non-

transparent predictions may have significant consequences (Selvaraju et al., 2017). 

In our study, Grad-CAM outputs were particularly useful during the validation phase to 

ensure that the model was not fixating on irrelevant image artefacts or margins. The 

consistent attention to pathological regions across multiple samples demonstrates the clinical 

alignment of the model’s internal representations. 

Furthermore, this approach aligns with best practices in medical AI, where model 

explainability is a key criterion for deployment in real-world settings (Ardila et al., 2019). It 

also aids radiologists in confirming the model's findings or identifying instances where 

human review is necessary, thereby enhancing collaborative diagnosis. 



6.5 Web Application Deployment 

Deploying the knee osteoarthritis (KOA) severity detection model as a web application was a 

critical step toward making the solution usable in real-world clinical environments. To bridge 

the gap between the trained deep learning model and its end-users, a lightweight yet 

functional interface was developed using the Gradio Python library. Gradio allows rapid 

prototyping and seamless deployment of machine learning models via an interactive web 

interface, eliminating the need for specialized software installation or programming expertise 

(Abid et al., 2019). 

The chosen model for deployment was EfficientNetB3, which outperformed ResNet50 in 

both accuracy and generalizability (as demonstrated in previous sections). The deployed 

interface enables users—such as clinicians, radiology technicians, or even researchers—to 

simply upload a knee X-ray image and obtain a classification result indicating whether the 

image is classified as Healthy, Moderate, or Severe. This web-based approach supports real-

time inference and is particularly beneficial for use in rural or resource-limited settings, 

where high-performance computing resources or skilled radiologists may not be readily 

available (Esteva et al., 2021). 

Figure 16 below shows the initial interface of the Gradio web app. Users are prompted to 

either click or drag-and-drop a knee X-ray image into the upload area. This triggers the 

backend process, where the image is preprocessed (resized, normalized, and batched) and 

passed through the EfficientNetB3 model hosted on the same environment. The model 

processes the image and returns a severity prediction along with a confidence score ranging 

from 0 to 1, indicating the certainty of the classification. 

 

 



 

Figure 16 Initial Interface of the Deployed Web Application for Knee Osteoarthritis 

Severity Detection. 

In Figure 17, the result after an image upload is displayed. The application provides instant 

feedback by showing the predicted class (e.g., Severe) and a confidence value (e.g., 0.53). 

This form of result presentation not only enhances transparency but also supports decision-

making in ambiguous cases, where borderline severity grades may lead to varied 

interpretations by human observers. According to Rajpurkar et al. (2017), such decision 

support tools can significantly reduce inter-observer variability and diagnostic delay in 

radiological workflows. 

 

 

 



 

Figure 17 Web Application Output Showing Predicted Severity Class with Confidence 

Score after Uploading a Knee X-ray. 

From a deployment standpoint, the use of Gradio provides several advantages: 

• Accessibility: It is hosted in-browser and does not require local model execution. 

• Efficiency: The interface is minimal yet functional, supporting quick predictions. 

• Extensibility: It allows for future integration with Grad-CAM visualizations, 

electronic health records (EHRs), or additional patient metadata. 

Furthermore, this deployment reflects the growing trend of integrating AI tools in 

telemedicine and clinical diagnostics, which is increasingly recognized as a solution to 

overcome disparities in healthcare delivery (Topol, 2019). This application serves as an early 

prototype demonstrating how AI-assisted tools can support orthopedic assessments without 

the need for deep AI expertise among end users. 

 

 

 

 

 

 



Chapter 7 – Conclusion and Future Work 

7.1 Conclusion 

This research successfully explored the potential of deep learning models for automating the 

severity classification of knee osteoarthritis (KOA) using X-ray images. By focusing on two 

advanced convolutional neural network (CNN) architectures—EfficientNetB3 and 

ResNet50—the study demonstrated the application of transfer learning for medical image 

analysis, with practical implications for diagnostic efficiency in clinical environments. 

The methodology encompassed rigorous steps: from data acquisition, preprocessing, and 

augmentation, to model training, evaluation, and deployment. A curated dataset of over 9,800 

anonymised knee X-rays sourced from Kaggle served as the foundation, representing the 

three severity classes of KOA based on the Kellgren–Lawrence grading system. Extensive 

preprocessing ensured image uniformity, and targeted augmentation addressed class 

imbalance, particularly the underrepresentation of severe cases—an often-encountered 

challenge in medical datasets (Litjens et al., 2017; Shorten & Khoshgoftaar, 2019). 

The results indicated that both models performed well in multi-class classification; however, 

EfficientNetB3 outperformed ResNet50 in several key performance metrics such as accuracy, 

precision, recall, and F1-score. This superiority can be attributed to EfficientNetB3’s 

compound scaling technique, which optimally balances network depth, width, and resolution 

(Tan & Le, 2019). Visual explanations using Grad-CAM further validated the model's 

attention to diagnostically significant regions, enhancing interpretability and clinical trust 

(Selvaraju et al., 2017). 

In addition to offline evaluation, the best-performing model—EfficientNetB3—was 

integrated into a user-friendly web application, enabling practical access for healthcare 

professionals and researchers. This end-to-end deployment not only illustrates technical 

feasibility but also lays the groundwork for future real-world adoption of AI tools in 

musculoskeletal radiology (Topol, 2019; Esteva et al., 2019). 

Ultimately, the study contributes to the growing body of literature demonstrating the viability 

of AI-assisted diagnostic tools in healthcare. It reinforces the importance of balancing 

technical sophistication with ethical, social, and professional considerations in the design and 

deployment of AI systems. 

 



7.2 Future Work 

While the project accomplished its key objectives, several opportunities exist for future 

enhancement and research extension. One immediate direction would be to explore more 

advanced or specialised deep learning architectures tailored to medical imaging, such as 

Vision Transformers (Dosovitskiy et al., 2020), DenseNet (Huang et al., 2017), or ensemble 

models that combine predictions from multiple networks to increase robustness and 

generalisability. 

Another potential avenue involves the incorporation of clinical metadata—such as patient 

age, gender, BMI, or history of joint pain—into the model pipeline. Multimodal learning 

frameworks that integrate radiographic data with structured clinical variables have been 

shown to improve diagnostic performance and enable personalised risk stratification (Miotto 

et al., 2017; Zhang et al., 2021). 

Future iterations of this work could also be validated on larger, more diverse datasets sourced 

from real hospital archives or through collaborations with healthcare institutions. Cross-

institutional validation would ensure better generalisation across imaging modalities, scanner 

settings, and population demographics—factors often neglected in isolated dataset studies. 

In terms of deployment, integrating the system into electronic health records (EHRs) and 

clinical decision support systems (CDSS) would enhance its utility in real-time diagnostic 

workflows. Ensuring interoperability with HL7/FHIR standards and obtaining regulatory 

approvals (e.g., MHRA in the UK or FDA in the US) are key steps toward clinical translation 

(McKinney et al., 2020). 

Lastly, expanding the system’s functionality to detect early KOA signs or distinguish between 

other joint diseases (e.g., rheumatoid arthritis) could broaden its scope and relevance in 

orthopedic diagnostics. Such advancements, combined with continual retraining on updated 

datasets, would help maintain clinical relevance and effectiveness in evolving healthcare 

contexts. 
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